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Remark For ✗ = quiver variety :

Braid Relations => Yang -Baxter equation s

Matrix Elements
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Root R -matrices and sympbctic resolutions

Definition (Beauville)
A- normal Complex variety Y is said to have sympkctc Singular,Kes if
1

.

5 a symplectc form w defined on the Smooth locus Y
"

of Y
; and

2. if IT : ✗ → Y is a resolution of Singular,tes (i. e. a brattonal proper morphism from
a Smooth Complex variety ) , Then ÌÌ is a ( passibly degenerate) sympkctic form
on ✗
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If in addition
,

Èw is non - degenerate , ✗ is said to be a symplectic
resolution

.

In this part, we assume that X is a sympkctic resolution .
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