R-matrix

1

After investing
$$e(N_{(Z)})$$
 for Z connected component of X^A , \exists Stabic, e

tix a polarization
$$\varepsilon$$
.
Letimition $R_{c',c} := Stab_{c'}^{-1} \circ Stab_{c} \in End(H_{G}^{*}(X^{A}) \otimes Q(g))$
Lie(G)

Let FCC be a codmension 2 facet and let

$$C = C_{o}, C_{1}, \ldots, C_{2n} = C$$

be the chambers containing 7 as a facet, in cyclic order around 7. Then

$$R_{C_0,C_1} R_{C_1,C_2} \cdots R_{C_{2n-1},C_{2n}} = id$$

<u>Remark</u> For X = quiver variety :

Braid Relations => Yang-Baxter equations

Matrix Elements

Let Z be a connected component of X^A, which is minimal w.r.t. < c for some chamber C.

Iheorem
$$(\mathbb{R}_{-c,c}, \chi_1, \chi_2) = \int_{\mathcal{Z}} \chi_{\circ} \chi_{2\circ} \frac{\mathfrak{e}(N_+(\mathcal{Z}) \otimes h)}{\mathfrak{e}(N_+(\mathcal{Z}))}$$
 for $\chi_i \in H_{\mathcal{G}}^*(\mathcal{Z})$.

Remark For non-minimal Z, one has other contributions to consider.

Root R-matrices and symplectic resolutions

Definition (Beauville) A normal complex variety Y is said to have <u>symplectic singularities</u> if 1. $\exists a$ symplectic form ω defined on the smooth locus Y^{sm} of Y; and 2. if $\pi: X \longrightarrow Y$ is a resolution of singularities (i.e. a birational proper morphism from a smooth complex variety), then $\pi^*\omega$ is a (possibly degenerate) symplectic form on X. If in addition, $\pi^* \omega$ is non-degenerate, X is said to be a symplectic resolution.

Let a s root and consider the hypeplane
$$a^{\perp}$$
.
Let C and C' be two chambers separated by a^{\perp} . Assume that $a(C) > 0$.
Set
 $R_{a} := R_{C,C}$